PII: S0040-4039(96)02382-9

Application of the Arbuzov Reaction for the Synthesis of Phosphonate Analogues of Myo-inositol 1,2-bis- and 1,2,6-trisphosphates and Methyl α -D-mannopyranoside 2,3,4-trisphosphate

Grzegorz Salamończyk^a, Nicola Rehnberg^b, Bożena Krawiecka^a and Jan Michalski^a*

^a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
^b Perstorp Pharma, S-284 80 Perstorp, Sweden

Abstract: The reaction of perbenzylated (\pm) -myo-inositol 1,2-bis- and 1,2,6-tris-phosphites with benzyl bromoacetate, followed by catalytic (Pd/C) hydrogenolysis affords (\pm) -myo-inositol 1,2-bis- and 1,2,6-tris(carboxymethylphosphonate). The same procedure is used for the synthesis methyl α -D-mannopyranoside 2,3,4-tris(carboxymethylphosphonate). © 1997, Published by Elsevier Science Ltd. All rights reserved.

Recognition of Ins(1,4,5)P₃ as a second messenger¹ has stimulated interest in the chemistry of inositol phosphates. Initially, most effort was put into biological aspects of this discovery² and into the synthesis of natural inositol phosphates.³ Recently, the focus of synthetic activity has been drifting towards structurally modified myo-inositol phosphates with novel biological properties.⁴ Ins(1,2,6)P₃ is an inositol trisphosphate regioisomer,⁵ produced in kg quantities (Perstorp Pharma, Sweden) by partial degradation of phytic acid with phytase.⁶ Ins(1,2,6)P₃ exhibits biological activity such as inhibition of inflammatory reactions and edema in skin burn injury,⁷ and is also effective in treeting acute abnormalities of nerve function in early experimental diabetes.⁸

This work describes the synthesis of the modified derivative of Ins(1,2,6)P₃ containing three carboxymethyl-phosphonate groups, -O-P(O)(OH)CH₂COOH. Several examples of phosphonate analogues of *myo*-inositol phosphates have been described: 5-methylenephosphonate analogue of Ins(1,4,5)P₃, ⁹ 5-methylphosphonate and 5-(difluoromethyl)-phosphonate analogues of Ins(1,4,5)P₃ and Ins(1,3,4,5)P₄, ¹⁰ rac. 3-methylphosphonate analogues of Ins(3,4)P₂ and Ins(1,3,4)P₃, ¹¹ methylphosphonate analogue of D-Ins(1)P, ¹² rac. *myo*-inositol-1-O-methylphosphonate-4,5-bisphosphate, ¹³ rac. *myo*-inositol 1,4,5-tris(methylphosphonate), *myo*-inositol 4,5-bis(methylphosphonate) and *myo*-inositol 5(methylphosphonate). ¹⁴ Synthetic procedures leading to this type of modified phosphoinositols involve either bis[6(alkyl)benzotriazole-1-yl] alkylphosphonates ¹⁰⁻¹³ or triethylammonium hydrogen methylphosphinate. ¹⁴

Our main target compound was myo-inositol 1,2,6-tris(carboxymethylphosphonate), hexasodium salt, 11. Other targets were myo-inositol-1,2-bis(carboxymethylphosphonate), tetrasodium salt, 10 and α -methyl mannopyranoside-

2,3,4-tris(carboxymethylphosphonate) hexasodium salt, 14. The starting materials for the syntheses were: commercial α -methyl mannopyranoside 3a, the relatively readily available 3,4,5,6-tetra-O-benzyl *myo*-inositol 1¹⁵ and 3,4,5-tri-O-benzyl *myo*-inositol 2.¹⁶

For the synthesis of the target compounds we chose a new strategy involving the following reaction sequence:

- (i) Phosphitylation of the *myo*-inositols (sugar), duly protected by benzyl groups to form inositol (sugar) dibenzyl phosphites;
- (ii) Arbuzov reaction of the myo-inositol (sugar) phosphites with benzyl bromoacetate;
- (iii) Deprotection of all benzyl groups.

The starting materials 1, 2 and 3b were phosphitylated by known phosphitylating reagents, 17 R₂N-P(OBn)₂ 4: R=Et or 5: R=Pr^{i.17} Yields and rates of the phosphitylation by both reagents are comparable. Phosphites 6, 7 and 12 were purified by a short column silica-gel chromatography and characterized by ³¹P NMR. ¹⁸

Arbuzov reaction of 6, 7 and 12 with benzyl bromoacetate was carried out at 75°C - 80°C. An excess of benzyl bromoacetate acted as solvent (Scheme 1).

Scheme 1. Reagents and conditions: a) 4 or 5, (3 eq. for 1, 4.6 eq. for 2), CH₂Cl₂ (2-5 ml/1 mmol of 1 or 2), tetrazole (5 eq. for 1, 6 eq. for 2), r.t., 2h, 71-90%; b) BrCH₂COOBn (excess), 80°C, 1-2h, 71-85%; c) Pd/C, H₂, methanol, 12h, r.t. then NaOH aq., 71-92%; d) 4, (4.5 eq.), CH₂Cl₂ (4 ml/1 mol of 3b), tetrazole (6 eq.), r.t. 1h, 72%; e) BrCH₂COOBn (excess), 75°C, 12h, 45%.

The reaction products **8**, **9** and **13** were purified by repeated column chromatography (Silica-gel, CHCl₃-CH₂Cl₂-acetone, 15:15:1).

The structure of **8**, **9** and **13** were confirmed by ³¹P NMR spectroscopy. ¹⁹

³¹P, ¹³C and ¹H NMR spectra of 10, 11 and 14 are listed in reference (20).

In the view of the mentioned above biological activity of α -trinositol ^{7,8} it seemed useful to test this property of the compound 11 in the similar, following assays:²¹

- (i) Irwin test,²²
- (ii) inhibition of edema, 23
- (iii) acetic acid-induced writhing.²⁴
- (iv) shock sensitivity.²⁵

Myo-inositol 1,2,6-tris(carboxymethylphosphonate) hexasodium salt 11 and the parent α -trinositol exhibited no change in the Irwin test (mice) at dose 256 mg/kg; At dose 512 mg/kg both compounds resulted in the death of one in three mice. In the test of inhibition of edema both compounds showed at dose 64 mg/kg a statistically significant effect (95%). For phosphonate 11 no statistically significant effect was seen in acetic acid-induced writhing whereas α -trinositol exhibited an activity in this test. Neither phosphonate 11 nor α -trinositol were active in the shock sensitivity test.

References and notes

- 1. Berridge, M.J.; Irvine, R.F. Nature 1984, 312, 315-321; Berridge, M.J.; Irvine, R.F. Nature 1989, 341, 197-205.
- Shears, S.B. Biochem.J. 1989, 260, 313-324; Shears, S.B. in Advances in Second Messenger and Phosphoprotein Research (Ed.: J.W.Putney, Jr.), Raven, New York 1992, pp. 63-92.
- Billington, D.C. The Inositol Phosphates: Chemical Synthesis and Biological Significance, VCH, Weinheim, 1993.
- 4. Potter, B.V.L.; Lampe, D. Angew. Chem. Int. Ed. Engl. 1995, 34, 1933-1972.
- 5. Chaudhary, A.; Dorman, G.; Perstwich, G.D. Tetrahedron Lett. 1994, 35, 7521-7524.
- Siren, M. EPO 179440 (1990); Blum, C.; Karlsson, S.; Schewer, G.; Spiess, B.; Rehnberg, N. Tetrahedron Lett., 1995, 36, 7239-7242.
- Siren, M.; Linne, L.; Persson, L. In "Inositol Phosphates and Derivatives Synthesis, Biochemistry and Therapeutic Potential"; A.B.Reitz, Ed.; ACS Series: Washington, DC, 1991, vol. 463, pp. 103-110.
- 8. Carrington, A.L.; Calcutt, N.A.; Ettlinger, C.B.; Gustafsson, T.; Tomlinson, D.R.; Eur. J. Pharmacol. 1993, 237,
- 9. Falck, J.R.; Abdali, A.; Wittenberger, S.J. J. Chem. Soc., Chem. Commun. 1990, 953-954.
- 10. a) Dreef, C.E.; Schiebler, W.; van der Marel, G.A.; van Boom, J.H. *Tetrahedron Lett.* 1991, 32, 6021-6024; b) Dreef, C.E.; Jansze, J.P.; Elie, C.J.J.; van der Marel, G.A.; van Boom, J.H. *Carbohydr Res.* 1992, 234, 37-50.
- 11. Dreef, C.E.; Tuinman, R.J.; Lefeber, A.W.M.; Elie, C.J.J.; van der Marel, G.A.; van Boom, J.H. *Tetrahedron* 1991, 47, 4709-4722.
- 12. Dreef, C.E.; Douwes, M.; Elie, C.J.J.; van der Marel, G.A.; van Boom, J.H. Synthesis, 19 443-447.
- 13. Schmitt, L.; Spiess, B.; Schlewer, G. Tetrahedron Lett. 1993, 34, 7059-7060.
- Willems, H.A.M.; Veeneman, G.H.; Westerduin, P. Tetrahedron Lett. 1992, 33, 2075-2078; Westerduin, P.;
 Willems, H.A.H.; van Boeckel, C.A.A. Carbohydr. Res. 1992, 234, 131-140.

- 15. Gigg, R.; Warren, C.D. J. Chem. Soc. (C), 1969, 2367-2371;
- 16. Desai, T.; Fernandez-Mayoralas, A.; Gigg, J.; Gigg, R.; Payne, S. Carbohydr. Res. 1990, 205, 105-123. The authors thank Dr. R.Gigg (National Institute for Medical Research, Mill Hill, London NW7 1AA) for generous providing them with the samples of 1 and 2.
- 17. Yu.K.-L.; Fraser-Reid, B. Tetrahedron Lett. 1988, 29, 979-982; Perich, J.W.; Johns, R.B. Tetrahedron Lett. 1987, 28, 101; Uhlmann, E.; Engels, J. Tetrahedron Lett. 1986, 27, 1023; Tanaka, T.; Tamatsukuri, S.; Ikehara, T. Tetrahedron Lett. 1986, 27, 199.
- 18. $6 \, \delta_p \, (C_6 D_6)$: 140.4 (J_{AB} 1.8 Hz, 2P); 7 $\delta_p \, (C_6 D_6)$: 140.2 (d, ⁵J_{PIP2} 2.1 Hz, P-2); 140.8 (dd, ⁵J_{PIP2} 2.1 Hz, ⁵J_{PIP6} 3.9 Hz, P-1); 143.2 (d, ⁵J_{PIP6} 3.9 Hz; P-6). 12 $\delta_p \, (C_6 D_6)$: 140.3; 141.6 (2P).
- 19. 8³¹P NMR δ_p (C₆D₆): 20.8-22.6 ppm (m).
 9³¹P NMR δ_p (C₆D₆): 21.0 22.5 (m), 24.0, 24.3, 24.4 ppm.
 13³¹P NMR δ_p (C₆D₆): 20.5 23.5 ppm (m).
- 20. 12 ³¹P NMR δ_p (C₆D₆): 19.71, 19.04 ppm.
 - ¹³C NMR δ: 178.4 (t, ${}^{2}J_{P-C}$ 5.2 Hz); 79.2 (d, ${}^{2}J_{P-C}$ 7.0 Hz); 76.8 (d, J unmeasured); 76.2 (s); 74.8(s); 73.5 (d, J_{P-C} 5.2); 73.2(s); 51.0 (CH₃OH); 41.1 (d, ${}^{1}J_{P-C}$ 123.8 Hz); 40.2 (d, ${}^{1}J_{P-C}$ 122.1 Hz).

 ¹H NMR δ: 4.67 (dt, 1H, H-2); 4.01 (dddd, partially overlaped, 1H, H-1); 3.89 (t, 1H, H-6); 3.75 (t, 1H, H-4); 3.50 (ddd, 1H, H-3); 3.33 (t, 1H, H-5); 2.88-2.62 (m, 4H, P-CH₂). $J_{1.2}=J_{2.3}=2.5$ Hz, $J_{1.6}=J_{5.6}=J_{5.6}=J_{4.3}$ 9.5 Hz; ${}^{3}J_{P-O-H2}=9.3$ Hz; ${}^{4}J_{P-O-C4H4}=1$ Hz, ${}^{3}J_{P-O-H1}=9.5$ Hz; ${}^{2}J_{P-C-H}=21.6$ Hz; ${}^{2}J_{P-C-H}=19.2$ Hz.

 13 ³¹P NMR δ(D₂O): 18.88; 19.37; 20.70 ppm.

 ¹³C NMR δ: 178.4-178.7 (m); 78.90(s); 78.46; 78.52; 75.68; 74.40; 73.15; 42.14 (m, $J_{P-C}=19$ Hz); 39.78 (m).

 ¹⁴H NMR δ: 4.65 (dm, ${}^{3}J_{PH}=10$ Hz, 1H); 4.30 (dd, J 9.0 and 9.5 Hz, 1H); 4.10 (t, J 9.0 Hz, 1H); 3.78 (t, J 9.5 Hz, 1H); 3.53 (m, 2H), 3.33; 2.6-3.0 (m, 6H, P-CH₂).

 14 ³¹P NMR δ (D₂O): 21.29; 20.68; 19.69 ppm.
- The studies were done at ITEM-labo, Le Genest-St.-Isle, France.
- 22. Irwin, S. Psychopharmacologica, 1968, 13, 222-257. Irwin test is a systematic observational method, used for comprehensively assessing and quantifying the behavioral and physiologic state of mouse and its responce to drugs.
- 23. Winter, C.A.; Risley, E.A.; Nuss, G.W. *Proc.Soc.Ex .Biol.Med.* 1962, 111, 544-547. This test is used for screening of antiinflammatory drugs.
- 24. Collier, H.O.J.; Dinneen, L.C.; Johnson, L.A.; Schneider, C. Br.J.Pharmac.Chemother. 1968, 32, 295-310. The test allows to evaluate an activity of drugs as inhibitors of the abominal constriction response, induced by noxious agents, in this case acetic acid.
- Charpentier, J.C.R. Soc. Biol. 1961, 155, 727. The method is used to evaluate the analgesic effects of drugs.

(Received in UK 16 September 1996; revised 2 December 1996; accepted 6 December 1996)